Advertisement
Product Releases
Advertisement

Barrier Gauze

Fri, 12/11/2009 - 5:46am

LISTED UNDER:

A study released this month shows this barrier gauze may provide additional safeguards against influenza viruses including H1N1

An independent lab report demonstrated that BIOGUARD™ barrier gauze dressings from Derma Sciences, Inc. exhibit greater than 99.9% inactivation rates against swine flu virus after exposure for 24 hours. This laboratory report may provide timely evidence that these antimicrobial dressings can play a significant role in the infection prevention program at hospitals and other healthcare facilities.

An independent lab report demonstrated that BIOGUARD™ barrier gauze dressings from Derma Sciences, Inc. exhibit greater than 99.9% inactivation rates against swine flu virus after exposure for 24 hours. This laboratory report may provide timely evidence that these antimicrobial dressings can play a significant role in the infection prevention program at hospitals and other healthcare facilities.

The company recently released an independent laboratory report indicating that the BIOGUARD™ barrier gauze dressings, noted to provide strong antimicrobial efficacy against such virulent pathogens as MRSA, also exhibit high antiviral efficacy against the H1N1 virus. The patented BIOGUARD™ dressings harness the antibacterial properties of a unique biocide known as Poly (DADMAC), which is inherently bactericidal and has been shown to be nontoxic in the standard battery of required biocompatibility tests.

BCS Laboratories Inc. of Gainesville, Florida exposed two varieties of BIOGUARD™ dressings to quantities of the Influenza A (H1N1; ATCC VR-1469) virus for a period of 24 hours. At the end of this interval, quantities of the virus were found to be reduced in both dressings by an average percentage of 99.93%.

Although human-to-human transmission of H1N1 virus can occur through coughing or sneezing by people infected with the influenza virus, or by touching something with flu viruses on it and then touching one’s mouth or nose, the potential also exists of transmission via cross-contamination during wound dressing changes.

Two published studies on Influenza A provided evidence that strains of influenza virus are able to survive on surfaces. Transmission of the virus has been documented to occur from porous and non-porous surfaces in large enough quantities to potentially cause disease.

For more information, visit www.dermasciences.com

Advertisement

Share this Story

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading